Electron Configuration Calculator

Generate electron configurations, noble gas notation, and orbital diagrams for any element using the Aufbau principle and Hund's rule.

Aufbau Principle Electron Configuration

Enter an atomic number to determine its electron configuration using the Aufbau principle.

Quick Select:

Enter a value from 1 (Hydrogen) to 118 (Oganesson)

Understanding Electron Configurations

Aufbau Principle: Electrons fill orbitals starting from the lowest energy level to higher energy levels following a specific order.

  • Orbital Order: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s...
  • s orbitals: Hold 2 electrons max
  • p orbitals: Hold 6 electrons max (3 orbitals × 2)
  • d orbitals: Hold 10 electrons max (5 orbitals × 2)
  • f orbitals: Hold 14 electrons max (7 orbitals × 2)

Exceptions: Some elements like Chromium (Cr) and Copper (Cu) have unusual configurations because half-filled and fully-filled d orbitals are more stable.

What are Electron Configurations?

An electron configuration describes how electrons are distributed among atomic orbitals in an atom. It follows specific principles that govern how electrons fill available orbitals, determining an element's chemical properties and position in the periodic table.

Aufbau Principle

Electrons fill orbitals from lowest to highest energy: 1s → 2s → 2p → 3s → 3p → 4s → 3d...

Pauli Exclusion

Each orbital holds maximum 2 electrons with opposite spins (↑↓).

Hund's Rule

Electrons occupy degenerate orbitals singly before pairing up (all spins parallel first).

Notation Format

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Number (1, 2, 3...): Principal energy level (shell)

Letter (s, p, d, f): Orbital type (sublevel)

Superscript (², ⁶, ¹⁰): Number of electrons in that orbital

Orbital Filling Order (Aufbau Diagram)

Electrons fill orbitals in order of increasing energy. The "diagonal rule" or Aufbau diagram helps visualize this sequence:

1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f
6s 6p 6d
7s 7p

Complete Filling Order:

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p

Notice: 4s fills before 3d, 5s before 4d, 6s before 4f and 5d!

s

s orbitals

1 orbital

Max: 2e⁻

p

p orbitals

3 orbitals

Max: 6e⁻

d

d orbitals

5 orbitals

Max: 10e⁻

f

f orbitals

7 orbitals

Max: 14e⁻

Worked Examples

Example 1: Carbon (C, Z = 6)

Step 1: Carbon has 6 electrons to distribute

Filling order: 1s → 2s → 2p

Step 2: Fill orbitals following Aufbau principle

1s: 2 electrons → 1s²
2s: 2 electrons → 2s²
2p: 2 electrons → 2p²

Result:

1s² 2s² 2p²

Or in noble gas notation: [He] 2s² 2p²

Example 2: Iron (Fe, Z = 26)

Iron has 26 electrons. Following the Aufbau order:

1s² (2e⁻) → Total: 2
2s² (2e⁻) → Total: 4
2p⁶ (6e⁻) → Total: 10
3s² (2e⁻) → Total: 12
3p⁶ (6e⁻) → Total: 18
4s² (2e⁻) → Total: 20
3d⁶ (6e⁻) → Total: 26 ✓

Full configuration:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

Noble gas notation:

[Ar] 4s² 3d⁶

[Ar] represents 1s² 2s² 2p⁶ 3s² 3p⁶ (18 electrons)

Common Exceptions to Aufbau Principle

Some elements have unexpected configurations because half-filled and fully-filled d orbitals are more stable than predicted by the Aufbau principle alone.

ElementExpectedActualReason
Cr (24)[Ar] 4s² 3d⁴[Ar] 4s¹ 3d⁵Half-filled d orbital stability
Cu (29)[Ar] 4s² 3d⁹[Ar] 4s¹ 3d¹⁰Fully-filled d orbital stability
Ag (47)[Kr] 5s² 4d⁹[Kr] 5s¹ 4d¹⁰Fully-filled d orbital stability
Au (79)[Xe] 6s² 4f¹⁴ 5d⁹[Xe] 6s¹ 4f¹⁴ 5d¹⁰Fully-filled d orbital stability

Why These Exceptions Occur

Half-filled (d⁵) and fully-filled (d¹⁰) d subshells provide extra stability due to:
Symmetry: Evenly distributed electron density
Exchange Energy: Electrons with parallel spins have lower energy
Minimized Repulsion: Balanced electron-electron interactions

Applications of Electron Configurations

🔬

Chemical Bonding

Valence electrons (outermost electrons) determine how atoms bond. Elements in the same group have similar configurations, explaining periodic trends in reactivity.

🌈

Spectroscopy

Electrons transition between energy levels, absorbing or emitting specific wavelengths of light. This creates unique spectral "fingerprints" for element identification.

🧲

Magnetism

Unpaired electrons create magnetic moments. Knowing the electron configuration helps predict whether a substance is paramagnetic (attracted to magnets) or diamagnetic (repelled).

⚛️

Ion Formation

Atoms lose or gain electrons to achieve stable noble gas configurations. Understanding configurations predicts ionic charges (e.g., Na → Na⁺, Cl → Cl⁻).

📊

Periodic Table Organization

The periodic table's structure directly reflects electron configurations. Groups share the same valence configuration, explaining similar chemical properties.

💎

Material Properties

Electronic structure determines conductivity, color, hardness, and other material properties. Transition metals with d electrons show unique catalytic behavior.

Quick Reference Guide

Three Key Principles

1.Aufbau: Fill lowest energy orbitals first
2.Pauli: Max 2 electrons per orbital (opposite spins)
3.Hund: Fill orbitals singly before pairing

Orbital Capacities

s: 1 orbital → 2 electrons max
p: 3 orbitals → 6 electrons max
d: 5 orbitals → 10 electrons max
f: 7 orbitals → 14 electrons max