Clausius-Clapeyron Equation

Relating vapor pressure to temperature for phase transitions

The Clausius-Clapeyron Equation

ln(P2/P1) = (DeltaHvap/R)(1/T1 - 1/T2)

For liquid-vapor equilibrium

Variables:

  • P1, P2 = Vapor pressures at T1 and T2
  • T1, T2 = Temperatures (Kelvin)
  • DeltaHvap = Enthalpy of vaporization (J/mol)
  • R = Gas constant (8.314 J/mol·K)

Applications:

  • • Vapor pressure calculations
  • • Boiling point estimation
  • • Phase diagram construction
  • • Distillation process design

Alternative Forms

Linear Form:

ln(P) = -DeltaHvap/RT + C

Plot ln(P) vs 1/T; slope = -DeltaHvap/R

Two-Point Form:

ln(P2/P1) = (DeltaHvap/R)(1/T1 - 1/T2)

Most common for comparing two temperatures

Step-by-Step Example

Problem:

The vapor pressure of water is 23.8 mmHg at 25 C. If DeltaHvap = 40.7 kJ/mol, what is the vapor pressure at 40 C?

1) Known values

  • P1 = 23.8 mmHg
  • T1 = 25 C = 298.15 K
  • T2 = 40 C = 313.15 K
  • DeltaHvap = 40.7 kJ/mol = 40700 J/mol
  • R = 8.314 J/mol·K
  • P2 = ?

2) Apply the equation

ln(P2/P1) = (DeltaHvap/R)(1/T1 - 1/T2)

3) Temperature term

1/T1 - 1/T2 = 1/298.15 - 1/313.15 = 0.000161 K^-1

4) Compute ln(P2/P1)

ln(P2/P1) = (40700/8.314) x 0.000161 = 0.788

5) Solve for P2

P2/P1 = e^0.788 = 2.20

P2 = 2.20 x 23.8 mmHg = 52.4 mmHg

Answer:

The vapor pressure of water at 40 C is about 52.4 mmHg.

Key Assumptions and Limits

Assumptions:

  • • DeltaHvap roughly constant over range
  • • Vapor behaves ideally
  • • Liquid volume negligible vs vapor
  • • System at equilibrium

Less Accurate When:

  • • Very large temperature spans
  • • Near critical temperature
  • • High pressures (non-ideal vapor)
  • • DeltaHvap strongly temperature dependent

Common DeltaHvap Values

SubstanceDeltaHvap (kJ/mol)Boiling Point (C)
Water (H2O)40.7100.0
Ethanol (C2H5OH)38.678.4
Benzene (C6H6)30.780.1
Acetone (C3H6O)29.156.1

Common Mistakes to Avoid

Temperature units

Always use Kelvin, not Celsius.

Energy units

If R is in J/mol·K, use DeltaHvap in J/mol.

Log type

Use natural log (ln), not log10.

Order of temperatures

Use (1/T1 - 1/T2) exactly; reversing changes the sign.

Frequently Asked Questions

When is the equation most accurate?

Over moderate temperature ranges away from the critical point.

Can I use it for sublimation?

Yes, replace DeltaHvap with Deltasub for solid-to-vapor transitions.

How to get DeltaHvap experimentally?

Measure vapor pressures at different T, plot ln(P) vs 1/T, slope = -DeltaHvap/R.

Why assume constant DeltaHvap?

It simplifies math; DeltaHvap changes slowly over small temperature ranges.