Colligative Properties

Properties that depend only on the number of solute particles, not their identity

The Four Colligative Properties

1. Vapor Pressure Lowering

Psolution = χsolvent × P°solvent

Raoult's Law

ΔP = P° - P = χsolute × P°

χ = mole fraction, P° = vapor pressure of pure solvent

2. Boiling Point Elevation

ΔTb = Kb × m × i

Where:

  • • ΔTb = boiling point elevation (°C)
  • • Kb = ebullioscopic constant (°C·kg/mol)
  • • m = molality (mol/kg)
  • • i = van't Hoff factor (# of particles per formula unit)

Kb(H₂O) = 0.512 °C·kg/mol

3. Freezing Point Depression

ΔTf = Kf × m × i

Where:

  • • ΔTf = freezing point depression (°C)
  • • Kf = cryoscopic constant (°C·kg/mol)
  • • m = molality (mol/kg)
  • • i = van't Hoff factor

Kf(H₂O) = 1.86 °C·kg/mol

4. Osmotic Pressure

Π = MRT × i

Where:

  • • Π = osmotic pressure (atm)
  • • M = molarity (mol/L)
  • • R = 0.0821 L·atm/(mol·K)
  • • T = temperature (K)
  • • i = van't Hoff factor

Van't Hoff Factor (i)

Solute TypeExamplei (ideal)Explanation
Non-electrolyteC₆H₁₂O₆, C₁₂H₂₂O₁₁1Doesn't dissociate
Strong electrolyte (1:1)NaCl, HCl, KBr22 ions per formula unit
Strong electrolyte (1:2)CaCl₂, Na₂SO₄33 ions per formula unit
Strong electrolyte (2:3)Al₂(SO₄)₃52 Al³⁺ + 3 SO₄²⁻
Weak electrolyteCH₃COOH1 < i < 2Partial dissociation

Worked Examples

Example 1: Freezing Point Depression

Problem: What is the freezing point of a solution containing 25.0 g of glucose (C₆H₁₂O₆) in 150 g of water?

Solution:

Step 1: Calculate moles of glucose

Molar mass = 180.16 g/mol

moles = 25.0 g ÷ 180.16 g/mol = 0.1388 mol

Step 2: Calculate molality

m = 0.1388 mol ÷ 0.150 kg = 0.925 mol/kg

Step 3: Calculate ΔTf

ΔTf = Kf × m × i

ΔTf = 1.86 °C·kg/mol × 0.925 mol/kg × 1

ΔTf = 1.72 °C

Freezing point = 0°C - 1.72°C = -1.72°C

Example 2: Boiling Point with Electrolyte

Problem: Calculate the boiling point of a solution of 10.0 g NaCl in 200 g of water.

Solution:

Step 1: Calculate molality

Molar mass NaCl = 58.44 g/mol

moles = 10.0 g ÷ 58.44 g/mol = 0.171 mol

m = 0.171 mol ÷ 0.200 kg = 0.855 mol/kg

Step 2: Determine i for NaCl

NaCl → Na⁺ + Cl⁻ (i = 2)

Step 3: Calculate ΔTb

ΔTb = 0.512 °C·kg/mol × 0.855 mol/kg × 2

ΔTb = 0.876 °C

Boiling point = 100°C + 0.876°C = 100.88°C

Example 3: Osmotic Pressure

Problem: Calculate the osmotic pressure of a 0.100 M glucose solution at 25°C.

Solution:

Π = MRT × i

Π = (0.100 mol/L)(0.0821 L·atm/mol·K)(298 K)(1)

Π = 2.45 atm

Π = 2.45 atm

Common Constants

Kb Values

Water: 0.512 °C·kg/mol

Benzene: 2.53 °C·kg/mol

Chloroform: 3.63 °C·kg/mol

Acetic acid: 3.07 °C·kg/mol

Kf Values

Water: 1.86 °C·kg/mol

Benzene: 5.12 °C·kg/mol

Cyclohexane: 20.0 °C·kg/mol

Camphor: 37.7 °C·kg/mol

Common Mistakes

⚠️

Using Molarity Instead of Molality

ΔTb and ΔTf use molality (mol/kg), NOT molarity!

⚠️

Forgetting van't Hoff Factor

Electrolytes dissociate! NaCl has i=2, not i=1.

⚠️

Wrong Temperature Units

Osmotic pressure uses Kelvin, not Celsius!

💡

Memory Aid

Colligative = collective effect of particles, regardless of identity