Coordination Chemistry

Complex Ions, Ligands, and Coordination Compounds

Key Definitions

Coordination Complex

A central metal atom/ion bonded to surrounding molecules or ions (ligands)

[Fe(CN)₆]³⁻

Coordination Number (CN)

Number of ligand donor atoms directly bonded to the central metal

Common CN values: 2, 4, 6

Ligand

A molecule or ion that donates electron pair(s) to the central metal

Monodentate: 1 donor atom (Cl⁻, NH₃, H₂O)

Bidentate: 2 donor atoms (en, ox²⁻)

Polydentate: 3+ donor atoms (EDTA⁴⁻)

Oxidation State

Charge on the central metal atom in the complex

[Cr(H₂O)₆]³⁺ → Cr is +3

Common Ligands

FormulaNameDenticityCharge
H₂OAquaMonodentate0
NH₃AmmineMonodentate0
Cl⁻ChloroMonodentate-1
CN⁻CyanoMonodentate-1
OH⁻HydroxoMonodentate-1
COCarbonylMonodentate0
enEthylenediamineBidentate0
ox²⁻OxalatoBidentate-2
EDTA⁴⁻EthylenediaminetetraacetateHexadentate-4

Nomenclature Rules

Naming Coordination Compounds

1. Cation before anion (as with all ionic compounds)

2. Ligands in alphabetical order (ignore prefixes like di-, tri-)

3. Use prefixes:

• di-, tri-, tetra-, penta-, hexa- for simple ligands

• bis-, tris-, tetrakis- for complex ligands (e.g., bis(ethylenediamine))

4. Metal name:

• Cationic/neutral complex: use element name

• Anionic complex: use -ate suffix (e.g., ferrate, cuprate)

5. Oxidation state in Roman numerals

Examples

[Co(NH₃)₆]Cl₃

Hexaamminecobalt(III) chloride

K₄[Fe(CN)₆]

Potassium hexacyanoferrate(II)

[Cr(H₂O)₄Cl₂]Cl

Tetraaquadichlorochromium(III) chloride

Crystal Field Theory (CFT)

d-Orbital Splitting

Ligands create an electrostatic field that splits the five d-orbitals into different energy levels

Octahedral (most common)

Higher energy (eg): dx²-y², d

Lower energy (t2g): dxy, dxz, dyz

Energy gap: Δo (crystal field splitting energy)

Tetrahedral

Splitting is inverted and smaller: Δt ≈ (4/9)Δo

Spectrochemical Series

Ligands ordered by increasing field strength (Δ):

I⁻ < Br⁻ < Cl⁻ < F⁻ < OH⁻ < H₂O < NH₃ < en < CN⁻ < CO

Weak field: Small Δ, high-spin
Strong field: Large Δ, low-spin

High-Spin vs Low-Spin

For d⁴, d⁵, d⁶, d⁷ octahedral complexes:

High-Spin: Weak field ligands → electrons spread out (Hund's rule)

Low-Spin: Strong field ligands → electrons pair up in lower orbitals

Worked Examples

Example 1: Determine Oxidation State

Problem: What is the oxidation state of Fe in [Fe(CN)₆]³⁻?

Solution:

Let x = oxidation state of Fe

6 CN⁻ ligands each contribute -1 charge

Overall complex charge = -3

x + 6(-1) = -3

x - 6 = -3

x = +3

Fe is in +3 oxidation state

Example 2: Name the Complex

Problem: Name [Pt(NH₃)₂Cl₂]

Solution:

1. Ligands alphabetically: ammine before chloro

2. Count ligands: 2 NH₃ (diammine), 2 Cl⁻ (dichloro)

3. Metal: platinum (neutral complex)

4. Oxidation state: 0 + 2(0) + 2(-1) = -2, so Pt is +2

Diamminedichloroplatinum(II)

Example 3: Coordination Number

Problem: What is the CN of [Co(en)₃]³⁺?

Solution:

en (ethylenediamine) is a bidentate ligand

3 en ligands × 2 donor atoms each = 6 donor atoms

CN = 6

Common Mistakes

⚠️

Confusing Denticity with Coordination Number

CN counts donor atoms, not ligand molecules!

⚠️

Forgetting Charge Balance

Sum of oxidation state + ligand charges must equal overall charge!

⚠️

Wrong -ate Suffix

Only use -ate for anionic complexes (e.g., ferrate, not ferrium)!