Heisenberg Uncertainty Principle

Fundamental limit on measurement precision

Formula

Δx · Δp ≥ h / (4π)

or Δx · Δp ≥ ℏ / 2

  • Δx = uncertainty in position
  • Δp = uncertainty in momentum
  • h = Planck constant (6.626 × 10⁻³⁴ J·s)
  • = h/(2π) (reduced Planck)

Example

Given: Δx = 1.0 × 10⁻¹⁰ m (atomic scale).

Δp ≥ (6.626 × 10⁻³⁴) / (4π × 1.0 × 10⁻¹⁰) kg·m/s

Δp ≥ 5.27 × 10⁻²⁵ kg·m/s

For electron (m = 9.109 × 10⁻³¹ kg), Δv ≥ Δp/m ≈ 5.8 × 10⁵ m/s.

Answer: Δv ≥ 5.8 × 10⁵ m/s

Notes

  • Not due to measurement imperfections; fundamental property of nature.
  • Also applies to energy-time: ΔE Δt ≥ ℏ/2.
  • Macroscopic objects: h very small, so uncertainties negligible.

Related Calculators